首页 > 公司 > 税务 > 几何五大定理,贯穿数学的五大定理

几何五大定理,贯穿数学的五大定理

来源:整理 时间:2023-03-03 15:11:03 编辑:律生活 手机版

本文目录一览

1,贯穿数学的五大定理

加法交换律:a+b=b+a 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac 加法结合律:(a+b)+c=a+(b+c)

贯穿数学的五大定理

2,请问高中数学老师常讲的立体几何五大公式是哪五大

立体几何中绝不只有五大公式,最起码有柱、锥、球的体积、面积公式(至少算六个);线线、线面、面面夹角公式三个,点面距公式一个等。你老师说的大概是做所布置的作业,只要记住“这”5大公式就能做。但我不知是什么作业,也不知“这”5大公式在不在上面所列。
正四面体体积公式(与边长a);定比分点;重心为中线之三分点;射影定理;欧拉面数棱数关系;我再想不出了,抱歉。。。
立体几何中绝不只有五大公式,最起码有柱、锥、球的体积、面积公式(至少算六个);线线、线面、面面夹角公式三个,点面距公式一个等。你老师说的大概是做所布置的作业,只要记住“这”5大公式就能做。但我不知是什么作业,也不知“这”5大公式在不在上面所列。

请问高中数学老师常讲的立体几何五大公式是哪五大

3,平面几何五大公理是什么

欧几里德的《几何原本》,一开始欧几里德就劈头盖脸地给出了23个定义,5个公设,5个公理。其实他说的公社就是我们后来所说的公理,他的公理是一些计算和证明用到的方法(如公理1:等于同一个量的量相等,公理5:整体大于局部等)他给出的5个公设倒是和几何学非常紧密的,也就是后来我们教科书中的公理。分别是: 公设1:任意一点到另外任意一点可以画直线 公设2:一条有限线段可以继续延长 公设3:以任意点为心及任意的距离可以画圆 公设4:凡直角都彼此相等 公设5:同平面内一条直线和另外两条直线相交,若在某一侧的两个内角和小于二直角的和,则这二直线经无限延长后在这一侧相交。 在这五个公设理里,欧几里德并没有幼稚地假定定义的存在和彼此相容。亚里士多德就指出,头三个公设说的是可以构造线和圆,所以他是对两件东西顿在性的声明。事实上欧几里德用这种构造法证明很多命题。第五个公设非常罗嗦,没有前四个简洁好懂。声明的也不是存在的东西,而是欧几里德自己想的东西。这就足以说明他的天才。从欧几里德提出这个公理到1800年这大约2100年的时间里虽然人们没有怀疑整个体系的正确性,但是对这个第五公设却一直耿耿于怀。很多数学家想把这个公设从这个体系中去掉,但是几经努力而无果,无法从其他公设中推到处第五公设。 同时数学家们也注意到了这个公设既是对平行概念的论述(故称之为平行公理)也是对三角形内角和的论述(即内角和公理)。高斯对这一点是非常明白的,他认为欧几里德几何式物质空间的几何,1799年他说给他的朋友的一封信中表现了他相信平行公里不能从其他的公设中推导出来,他开始认真从事开发一个新的能够应用的几何。1813年,发展了他几何,最初称为反欧氏几何,后称星空几何,最后称非欧几何。在他的几何中三角形内角可以大于180度。当然得到这样的几何不是高斯一人,历史上有三个人。一个是他的搭档,另一个是高斯的朋友的儿子独立发现的。其中一个有趣的问题是,非欧氏几何中过直线外一点的平行线可以无穷。 不久之后,俄国的一位著名数学家也发现了一个新的非欧几何,即罗氏几何。他的三角形内角和是小于180度的。 而19世纪初非欧式几何的发现,正是后来爱因斯坦发现广义相对论的基础。
公设一:任两点必可用直线连接 公设二:直线可以任意延长 公设三:可以任一点为圆心,任意长为半径画圆 公设四:所有的直角皆相同 公设五:过线外一点,恰有一直线与已知直线平行
以下是欧几里得的五大公设: 公设一:任两点必可用直线连接 公设二:直线可以任意延长 公设三:可以任一点为圆心,任意长为半径画圆 公设四:所有的直角皆相同 公设五:过线外一点,恰有一直线与已知直线平行 其中公设五又称之为平行公设,因为它不如其它公设简洁,看起来倒更像个命题,在鲍耶和罗巴切夫斯基把第五公设去掉之后,他们发现的非欧几何。欧几里德几何学全部公理:点是没有部分的 线是平面上只有长度,没有宽度的 直线是可以相两边无限延伸的过两点有且只有一条直线 平面内过一点可以任何半径画圆 两直线平行,同位角相等 等量+等量和相等 等量—等量差相等能重合的图形全等整体大于部分

平面几何五大公理是什么

4,立体几何中的定理

基本概念公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。 公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。公理3: 过不在同一条直线上的三个点,有且只有一个平面。推论1: 经过一条直线和这条直线外一点,有且只有一个平面。推论2:经过两条相交直线,有且只有一个平面。推论3:经过两条平行直线,有且只有一个平面。公理4 :平行于同一条直线的两条直线互相平行。等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面: 平行、 相交 (2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。两异面直线所成的角:范围为 ( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点—— 平行或异面直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。esp.空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角 由此得直线和平面所成角的取值范围为 [0°,90°]最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直esp.直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面 内的任意一条直线都垂直,我们就说直线a和平面 互相垂直.直线a叫做平面 的垂线,平面 叫做直线a的垂面。直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系: 两个平面平行-----没有公共点; 两个平面相交-----有一条公共直线。a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。b、相交二面角(1) 半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。(2) 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为 [0°,180°](3) 二面角的棱:这一条直线叫做二面角的棱。(4) 二面角的面:这两个半平面叫做二面角的面。(5) 二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。(6) 直二面角:平面角是直角的二面角叫做直二面角。esp. 两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为 ⊥ 两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。Attention:二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)多面体棱柱棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。棱柱的性质(1)侧棱都相等,侧面是平行四边形(2)两个底面与平行于底面的截面是全等的多边形(3)过不相邻的两条侧棱的截面(对角面)是平行四边形棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的性质:(1) 侧棱交于一点。侧面都是三角形(2) 平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方正棱锥正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。(3) 多个特殊的直角三角形esp: a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。Attention: 1、 注意建立空间直角坐标系2、 空间向量也可在无坐标系的情况下应用多面体欧拉公式:V(角)+F(面)-E(棱)=2正多面体只有五种:正四、六、八、十二、二十面体。球attention: 1、 球与球面积的区别2、 经度(面面角)与纬度(线面角)3、 球的表面积及体积公式4、 球内两平行平面间距离的多解性
绝对不难,属于高考中必拿的分。 多记忆一些典型的图形和一些现成的结论,比如正3棱锥侧面与底面成的角的大小等等,主要对付选择和填空。对于大题目,稍微复杂的你就用空间向量吧,以求代证,很方便。虽然写的可能会比用“直接法”多一些,但由于需要思考的少,做起来未必慢。此时注意要细心!因为写快了很容易看错、算错,而且是很低级的错误,做错了你肯定很懊恼。不果“直接法”也要很熟,防止出现一些建立空间坐标系比较困难或题目设计成用“直接法”解决的情况。多做些题,把基础打牢,但别玩题海战术。
立几知识整理 一、有关平行的证明 1、 线‖线 ⑴公理4 ⑵ ⑶ ⑷ l1‖l2 l1‖α α‖β l1‖l3 l1‖l2 l1‖l2 l1‖l2 l2‖l3 α∩β=l2 线‖线 线‖线 线‖面 线‖线 面‖面 线‖线 同垂直于一个平面 线‖线 2、 线‖面 ⑴ ⑵ α‖β a‖α a‖β a‖b 线‖线 线‖面 面‖面 线‖面 3、 面‖面 ⑴ ⑵ α‖β α‖β a‖α b‖β 线‖面 面‖面 同垂直于一直线 面‖面 二、有关垂直的证明 1、 线⊥线 ⑴ ⑵ 三垂线定理 ⊥射影 ⊥斜线 平面内直线 逆定理 ⊥斜线 ⊥射影 (线⊥面 线⊥线) (线⊥线 线⊥线) 2、 线⊥面 ⑴ ⑵ ⑶ ⑷ a‖b α‖β (线⊥线 线⊥面) 3、 面⊥面 (线⊥面 面⊥面) 三、有关角的计算 1、 异面直线所成角 ⑴定义:(默写) ⑵范围:( ] ⑶求法:作平行线,将异面 相交; ⑷(c92)棱长为1的正方体,m、n分别为中点,求am、cn成角的余弦; ⑸(c95)直三棱柱中, ,d1、f1分别为中点,bc=ca=cc1,求bd1 与af1所成角的余弦。 ⑷ ⑸ 2、 线、面所成角 ⑴定义(默写) ⑵范围: ⑶求法:作垂线,找射影; ⑷(c95)圆柱的轴截面为正方形,e为底面圆周上一点,af⊥de于f; (ⅰ)证af⊥db (ⅱ)如圆柱与三棱锥d—abe体积比为 ,求直线de与平面abcd所成角; ⑸(c98)斜三棱柱侧面a1acc1⊥底面abc, ,bc=2,ac= , aa1⊥a1c,aa1=a1c (ⅰ)求aa1与底abc所成角大小; (ⅱ)求侧面a1abb1与底abc成二面角大小。 ⑷ ⑸

5,几何有什么定理

1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形, 21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。 22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。 23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有 BPPC×CQQA×ARRB=1 24、梅涅劳斯定理的逆定理:(略) 25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。 26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线 27、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1. 28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M 29、塞瓦定理的逆定理:(略) 30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点 31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。 32、西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线) 33、西摩松定理的逆定理:(略) 34、史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心。 35、史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上。这条直线被叫做点P关于△ABC的镜象线。 36、波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2∏). 37、波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点 38、波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。 39、波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点 40、波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点。 41、关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。 42、关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。 43、卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线。 44、奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线 45、清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线 46、他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点) 47、朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。 48、从三角形各边的中点,向这条边所的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心。 49、一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。 50、康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。 51、康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M、N两点关于四边形ABCD的康托尔线。 52、康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M、N、L三点关于四边形ABCD的康托尔点。 53、康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上。这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线。 54、费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。 55、莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。 56、牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。 57、牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。 58、笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。 59、笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。 60、布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线共点。 60、巴斯加定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或延长线的)交点共线参考资料: http://www.tianya.cn/techforum/Content/71/536786.shtml

6,几何定律公式概念整理

初等平面几何 一 公理 1 任意不同的两点确定通过它们的一条直线。 2 设AB是给定的线段,OX是已知的射线,则在射线OX上有且只有一点C,使得线段OC=AB。 3 几何图形可以迁移位置而不改变其形状和大小。 4 平行公理:通过已知直线外一点至多可引一条直线和已知直线平行。 5 阿基米德公理:给定线段AB>CD, 当用后者去度量前者时,量了若干次后,总会超过前者,或者说,必定存在正整数n, 使得 (n-1)CD≤AB≤Ncd 二 轴对称和中心对称 1 轴对称:沿某条直线对折,在直线两旁的部分完全重合。这条直线叫对称轴,能重合在一起的点叫对称点。若这是一个图形,就叫轴对称图形。(如等腰三角形) 性质:对称点的中垂线即为对称轴。 2 中心对称:两个图形绕某中心旋转180°能彼此重合。该点叫对称中心,能重合的点叫对称点。若这是一个图形,就叫中心对称图形。(如平行四边形) 性质:对称点的中点即为对称中心。 三 基本概念 1 线段的中垂线和角的平分线 (1)中垂线的性质: 1°中垂线上任一点距线段两端等远 2°凡距线段两端等远的点都在中垂线上 (2)角平分线的性质: 1°角平分线上的任一点同角的两边等距 2°凡在角内同两边等距的点都在角平分线上 2视角 (1)线段的视角:自一点发出两条射线使分别通过一已知线段的两端,则这两条射线所成的角,叫做该点对已知线段的视角。 (2)点对圆的视角:自圆外一点向圆所引的两切线(视为射线),这两切线的夹角叫做该点对圆的视角。 三 全等三角形 1判定定理:s.a.s, a.s.a, a.a.s, S.s.a(大边边角) S.s.a: 两三角形若有两边及其中大边的对角对应相等,则它们必是全等的。 证:a/sinA = a1/sinA1, b/sinB = b1/sinB1, 若a,a1均为大边,a=a1, b=b1,且A=A1,则sinB=sinB1, 而B,B1∈(0,180°),故B,B1相等或互补,但若是互补,那么 max(B,B1)≥90°,这与b,b1是小边矛盾,所以B=B1. 注意:小边边角不成立。 2 全等直角三角形: (1)直角边,直角边(s.a.s) (2)斜边,直角边(S.s.a) (3)直角边,相邻或相对锐角(a.s.a, a.a.s) (4)斜边,锐角(a.a.s) 四 平行线 1存在定理:在一平面上,同垂直于一已知直线的两条直线互相平行。 2判定定理:两已知直线被第三条直线所截,若下列条件之一成立,则这两已知直线互相平行: 1°同位角相等 2°内错角相等 3°同旁内角互补 3性质定理:若两直线被第三条直线所截,则所成 1°同位角相等 2°内错角相等 3°同旁内角互补 推论:(1)若两条直线垂直于两条平行线之一,则也垂直于另一条。 (2)相交直线的垂线也相交。 4平行截割定理: (1)两条直线被一组平行线所截,如果在一条直线截得的线段相等,那么在另一条上截得的线段也相等。 如果两条直线被一组截线各截出相等的线段,而且这组截线中有两条平行,那么全组截线都是互相平行的。(注意不是1°的逆定理) (2)角平行截割定理:角的两边被平行线所截,如果在一边截得的线段相等,那么在另一边截得的线段也相等。 角平行截割定理逆定理:角的两边被一组截线各截出相等的线段,那么全组截线都是互相平行的。 (3)关于比例的平行截割定理: 1°两条直线被一条平行于第三边的直线所截,截得的线段必成比例。 2°如果两条直线被一组截线截出的线段成比例,而且这组截线中有两条平行,那么全组截线都是互相平行的。 3°三角形的两边被一组平行线所截,截得的线段必成比例。 4°逆定理:如果三角形的两边被一条直线截得的线段成比例,那么这条直线平行于第三边。 (4)中位线定理 1°三角形任一中位线平行于第三边且等于该边的一半。 2°梯形的中位线平行于底边且等于两底和的一半。 五 图形 (一)三角形 1 外角定理:三角形的每个外角大于任一内对角。 2 等腰三角形:四线合一 3 三角形不等定理: (1)大边对大角,大角对大边 (2)三角形中,任一边小于其它两边之和而大于它们的差。 推论:对于任意三点A、B、C,总有 ∣AB-AC∣≤BC≤AB+AC (3)若两个三角形彼此有两边对应相等,则 1°夹角大的,对边较大 2°第三边大的,对角较大 4 五心 (1)外心:三边中垂线之交点,也是外接圆之圆心 (2)重心:三边中线之交点 (3)垂心:三边高线之交点(与三顶点构成垂心组) (4)内心:三内角平分线之交点,也是内切圆之圆心 (5)旁心:一内角与另外两内角之外角的三条角平分线之交点,共有3点,也是旁切圆之圆心 5 内、外角平分线定理:设三角形某角及其外角的平分线同对边及其延长线相交,则交点分别内分及外分对边,所得分比等于两邻边之比。(逆定理存在) 6 正三角形:PA≤PB+PC,当P位于其外接圆中A点所对的弧BC时取等号。 (二)平行四边形 1 定义:两双对边各互相平行的四边形。 2 性质定理: 1°两双对边各相等 2°两双对角各相等 3°两对角线各互相平分 3 判定定理:四边形若具有下列条件之一,则必是平行四边形 1°两双对边各相等 2°两双对角各相等 3°两对角线各互相平分 4°一双对边平行且相等 4 矩形:等角的平行四边形(两对角线相等,对边中点的连线为对称轴) 菱形:等边的平行四边形(两对角线互相平分,且对角线为对称轴) 正方形:既是矩形又是菱形的四边形(4条对称轴) (三)梯形 1 定义:有一双对边平行的四边形。 2 等腰梯形:两腰相等,两底角相等,对角线相等,以两底中点的连线为对称轴。 (四)多边形 1 内角和:(n-2)*180°,外角和:360° 2 正多边形:每条边、每个角都相等的多边形 (五) 圆 1 对称性:以圆心为对称中心,以任一条直径为对称轴。 2 不等定理:弧、弦、圆心角、弦心距 l=Rθ=(n\180)*2πR 3 切线定理 (1)圆的切线垂直于过切点的半径 (2)经过圆半径外端且垂直于这条半径的直线,是圆的切线 (3)自圆外一点向圆所引的两切线等长,且自该点至圆心所引的射线平分该点对圆的视角 (4)公切线定理:两圆的两条外公切线等长,两条内公切线也等长 (5)两圆相切定理: 1°相切两圆的切点在连心线上,反之,两圆过连心线上同一点必然相切 2°两圆外切的充要条件是OO′= R+R′,内切的充要条件是OO′= ∣R-R′∣ 4 圆周角:顶点在圆上且两边都和圆相交的角 (在一圆中,同弧所对的圆周角等于所对圆心角的一半) 弦切角:一边和圆相交,另一边和圆相切于顶点的角 (圆的弦切角等于它包含的弧所对的圆周角) 圆内角:顶点在圆内的角 (圆的圆内角,等于它本身及其对顶角包含的弧所对的圆周角之和) 圆外角:顶点在圆外而两边和圆均有公共点的角 (圆的圆外角,等于它包含的两弧所对的圆周角之差) 总结:1°同弧所对的:圆内角>圆周角=弦切角>圆外角 2°如果一个角的两边和圆均有公共点而且等于圆周角,那么此角的顶点一定在圆上。 5 圆内接四边形:对角互补。(逆定理存在) 圆外切四边形:对边和相等。(逆定理存在) 6 圆幂定理:已知一圆O,通过一点P任作一割线交圆于A、B,则 p=PA*PB=∣PO2-R2∣,令p′= PO2-R2,这个p′值,叫做P点对于圆O的幂。具体的说,点在圆外幂为正,点在圆内幂为负,点在圆上幂为0 7 四点共圆的判断: (1)对角互补的四边形 (2)两点对一线段等视角 (3)圆幂定理:PA*PB=PC*PD 六 相似三角形 1 基本定理:平行于三角形的一边而且和其它两边相交的直线,截得的三角形和原三角形相似。 2 判定定理:两个三角形若具有下列条件之一,则它们必是相似的: (1)两双对应角各相等(a.a) (2)一双对应角相等且其夹边成比例(a.s.a) (3)三双对应边成比例(s.s.s) (4)两双对应边成比例且其中大边的对角相等(S.s.a) 3 相似三角形任一双对应线段(如对应的高、中线、角平分线等)的比都等于相似比。 七 面积 S(平行四边形)=ah=absinα S(矩形)=ab S(菱形)= ah=absinα= (1/2)l1l2 S(正方形)=a2= (1/2)l2 S(三角形)=(1/2)ah=(1/2)absinC S(圆)=πR2 S(扇形)=(n/360) πR2=(1/2)θR 2 S(弓形)=(1/2)R 2(απ/180-sinα) 贝利契纳德公式:S(四边形)= (1/4)[4e2f2-(a2-b2+c2-d2)2]1/2 卜拉美古嗒公式:S(圆内接四边形)= [(s-a)(s-b)(s-c)(s-d)] 1/2 (s为半周) 海伦公式:S(三角形)= [s(s-a)(s-b)(s-c)] 1/2 八 基本轨迹: 1 距离两个已知点等远的点的轨迹,是这两点间所连线段的中垂线。 2 在已知角内和两边等距的点的轨迹,是这个角的平分线。 3 同两条平行的已知直线等距的点的轨迹是一条直线,它和这两条已知直线平行,且同它们等距。 4 到一条已知直线距离为定长的点的轨迹,是在已知直线两侧并和它平行的一双直线,其中每一条到已知直线的距离都等于定长。 5 到一个定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的一个圆。 6 对于一定线段的视角等于定角的点的轨迹,是以定线段为弦的一双弓形弧。 7 对于一定线段的视角等于直角的点的轨迹,是以定线段为直径的一个圆。 九 特别概念 1 欧拉线:三角形的外心、重心、垂心共线 (重心到一边之距离等于对顶点到垂心距离之一半) 2 牛顿线:完全四边形三条对角线的中点共线 3 密克点:完全四边形各边交成四个三角形,它们的外接圆共点。 4 西摩松线: (1)某点在三角形三边或其延长线上的正射影共线的充要条件是某点在三角形的外接圆上。三正射影所在的直线叫做叫做某点对于三角形的西摩松线。 (2)完全四边形的密克点在四边上的正射影共线。这直线叫做完全四边形的西摩松线。既然都喜欢数学 就一起加油

7,求数学几何定理

一、线与角1、两点之间,线段最短2、经过两点有一条直线,并且只有一条直线3、对顶角相等;同角的余角(或补角)相等;等角的余角(或补角)相等4、经过直线外或直线上一点,有且只有一条直线与已知直线垂直5、(1)经过已知直线外一点,有且只有一条直线与已知直线平行(2)如果两条直线都和第三条直线平行,那么这两条直线也平行6、平行线的判定:(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行7、平行线的特征:(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补8、角平分线的性质:角平分线上的点到这个角的两边的距离相等角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上9、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上二、三角形、多边形10、三角形中的有关公理、定理:(1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和②三角形的一个外角大于任何一个与它不相邻的内角③三角形的外角和等于360°(2)三角形内角和定理:三角形的内角和等于180°(3)三角形的任何两边的和大于第三边(4)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半11、多边形中的有关公理、定理:(1)多边形的内角和定理:n边形的内角和等于( n-2)×180°(2)多边形的外角和定理:任意多边形的外角和都为360°(3)欧拉公式:顶点数 + 面数-棱数=212、如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分13、等腰三角形中的有关公理、定理:(1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)(3)等腰三角形的“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”(4)等边三角形的各个内角都相等,并且每一个内角都等于60°(5)三边都相等的三角形叫做等边三角形;有一个角等于600的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形14、直角三角形的有关公理、定理:(1)直角三角形的两个锐角互余(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形(4)直角三角形斜边上的中线等于斜边的一半(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半三、特殊四边形15、平行四边形的性质:(1)平行四边形的对边平行且相等(2)平行四边形的对角相等(3)平行四边形的对角线互相平分.16、平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形(2)一组对边平行且相等的四边形是平行四边形(3)两组对边分别相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形17、平行线之间的距离处处相等18、矩形的性质:(1)矩形的四个角都是直角(2)矩形的对角线相等且互相平分19、矩形的判定:(1)有一个角是直角的平行四边形是矩形(2)有三个角是直角的四边形是矩形(3)对角线相等的平行四边形是矩形20、菱形的性质:(1)菱形的四条边都相等(2)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角21、菱形的判定:(1)有一组邻边相等的平行四边形是菱形(2)四条边相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形22、正方形的性质:(1)正方形的四个角都是直角(2)正方形的四条边都相等(3)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角23、正方形的判定:(1)有一个角是直角的菱形是正方形(2)有一组邻边相等的矩形是正方形(3)两条对角线垂直的矩形是正方形(4)两条对角线相等的菱形是正方形梯形:一组对边平行而另一组对边不平行的四边形是梯形24、等腰梯形的判定:(1)同一条底边上的两个内角相等的梯形是等腰梯形(2)两条对角线相等的梯形是等腰梯形25、等腰梯形的性质:(1)等腰梯形的同一条底边上的两个内角相等(2)等腰梯形的两条对角线相等26、梯形的中位线平行于梯形的两底边,并且等于两底和的一半四、相似形与全等形27、相似多边形的性质:(1)相似多边形的对应边成比例(2)相似多边形的对应角相等(3)相似多边形周长的比等于相似比(4)相似多边形的面积比等于相似比的平方(5)相似三角形的对应角相等,对应边成比例;相似三角形对应高的比,对应中线的比,都等于相似比;相似三角形周长的比等于相似比;相似三角形的面积比等于相似比的平方28、相似三角形的判定:(1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似(2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似29、全等多边形的对应边、对应角分别相等30、全等三角形的判定: (1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(S.S.S.)(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等(S.A.S.)(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(A.S.A.)(4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(A.A.S.)(5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等(H.L.)五、圆31、(1)在同圆或等圆中,如果两个圆心角,两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等;(2)半圆或直径所对的圆周角都相等,都等于90°(直角);(3)90°的圆周角所对的弦是圆的直径32、在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半; 相等的圆周角所对的弧相等33、不在同一条直线上的三个点确定一个圆34、(1)经过半径的外端且垂直于这条半径的直线是圆的切线(2)圆的切线垂直于过切点的半径35、从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角36、圆的内接四边形对角互补,外角等于内对角37、垂径定理及推论:垂直于弦的直径平分这条弦,并且平分所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧六、变换37、轴对称:(1)关于某条直线对称的两个图形是全等形;如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(2)两个图形关于某直线对称,如果它们的对应线段(或延长线)相交,交点一定在对称轴上;(3)两个图形关于某直线对称,如果它们的对应线段(或延长线)相交,交点一定在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称38、平移:(1)平移不改变图形的形状和大小(即平移前后的两个图形全等);(2)对应线段平行且相等(或在同一直线上),对应角相等;(3)经过平移,两个对应点所连的线段平行(或在同一直线上)且相等. 39、旋转:(1)旋转不改变图形的形状和大小(即旋转前后的两个图形全等)(2)任意一对对应点与旋转中心的连线所成的角彼此相等(都是旋转角)(3)经过旋转,对应点到旋转中心的距离相等40、中心对称:(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点连线都经过对称中心;(3)如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称41、位似:(1)如果两个图形不仅相似,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比;(2)位似图形上的任意一对对应点到位似中心的距离之比等于位似比(http://www.szxcwtzx.com/news/show.aspx?id=1092&cid=28)初中数学几何定理集锦 1。同角(或等角)的余角相等。 3。对顶角相等。 5。三角形的一个外角等于和它不相邻的两个内角之和。 6。在同一平面内垂直于同一条直线的两条直线是平行线。 7。同位角相等,两直线平行。 12。等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。 16。直角三角形中,斜边上的中线等于斜边的一半。 19。在角平分线上的点到这个角的两边距离相等。及其逆定理。 21。夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。 22。一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。 24。有三个角是直角的四边形、对角线相等的平行四边形是矩形。 25。菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。 27。正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。 34。在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。 36。垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 43。直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。 46。相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。 37.圆内接四边形的对角互补,并且任何一个外角等于它的内对角。 47。切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。 48。切线的性质定理①经过圆心垂直于切线的直线必经过切点。 ②圆的切线垂直于经过切点的半径。 ③经过切点垂直于切线的直线必经过圆心。 49。切线长定理 从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。 50。弦切角定理 弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。 51。相交弦定理 ; 切割线定理 ; 割线定理 ( http://tieba.baidu.com/f?kz=69994527 )
同角(或等角)的余角相等。 对顶角相等。 三角形的一个外角等于和它不相邻的两个内角之和。 在同一平面内垂直于同一条直线的两条直线是平行线。 同位角相等,两直线平行。 等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。 直角三角形中,斜边上的中线等于斜边的一半。 在角平分线上的点到这个角的两边距离相等。及其逆定理。 夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。 一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。 有三个角是直角的四边形、对角线相等的平行四边形是矩形。 菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。 正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。 在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。 垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。 相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。 圆内接四边形的对角互补,并且任何一个外角等于它的内对角。 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。 切线的性质定理①经过圆心垂直于切线的直线必经过切点。 ②圆的切线垂直于经过切点的半径。 ③经过切点垂直于切线的直线必经过圆心。 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。 弦切角定理 弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。 相交弦定理 ; 切割线定理 ; 割线定理
文章TAG:几何五大定理几何五大定理

最近更新

  • 企业工商年检,如何查询企业工商年检企业工商年检,如何查询企业工商年检

    如何查询企业工商年检2,我公司营业执照组织机构代码税务登记证等要年检需要准备什么3,企业营业执照年审在什么时候4,工商年检需要什么资料5,什么是企业年检6,公司年检制度1,如何查询企业工商.....

    税务 日期:2024-02-08

  • 183天183天

    是182天或闰年183天。如何计算183天?如何计算183天?如何计算183天?183天是4.0%,每年都是这样,闰年计算为183天,平年计算为182天,183天相当于半年,也就是半年,但是闰年你按183天算,2月却多了一天,.....

    税务 日期:2024-02-08

  • 就业登记表,南京市劳动者申报就业登记表是用来做什么就业登记表,南京市劳动者申报就业登记表是用来做什么

    南京市劳动者申报就业登记表是用来做什么2,深圳就业登记表有什么用3,为什么要填写就业登记表4,就业登记表和劳动合同丢失影响办理社保5,就业登记表在那里拿的6,毕业生就业登记表怎么写1,南京.....

    税务 日期:2024-02-08

  • 经济实惠的手机,什么手机经济实惠经济实惠的手机,什么手机经济实惠

    什么手机经济实惠国产机性价比高!2,什么手机经济实惠的又好用诺基亚1681c。198。很好用OPPO不错3,什么手机经济又实惠诺基亚山寨鸡5250性价比高、缺点没有闪光灯、两百万像素。5800XM可以.....

    税务 日期:2024-02-08

  • 分期购,淘宝买东西结账时有一个分期购是做什么的是可以用支付宝分期付分期购,淘宝买东西结账时有一个分期购是做什么的是可以用支付宝分期付

    淘宝买东西结账时有一个分期购是做什么的是可以用支付宝分期付2,淘宝花呗分期购是什么意思3,支付宝花呗分期购到底是什么意思比如说我在淘宝购买了一个东西4,用蚂蚁花呗分十二期买的一台.....

    税务 日期:2024-02-08

  • 马来西亚是中国吗,马来西亚是中国的吗的最新相关信息马来西亚是中国吗,马来西亚是中国的吗的最新相关信息

    马来西亚是中国的吗的最新相关信息2,马来西亚以前是不是中国的3,马来西亚在哪个省啊4,马来西亚属于中国吗5,马来西亚在哪个洲6,马来西亚曾经是中国的吗1,马来西亚是中国的吗的最新相关信息不.....

    税务 日期:2024-02-08

  • 避税港,paradise是什么意思避税港,paradise是什么意思

    paradise是什么意思2,通过国际避税港怎么避税啊3,避税港的英语是taxhaven还是taxheaven4,如何认识国际避税地1,paradise是什么意思天堂2,通过国际避税港怎么避税啊很简单的,先在国际避税港注.....

    税务 日期:2024-02-08

  • 天津市小学排名,南开小学在天津市小学排名天津市小学排名,南开小学在天津市小学排名

    天津小学排名天津市2019小学排名:1、天津市实验/123天津和平小学排名天津和平和平区实验小学:-0。天津市武清区焦点小学排名天津市武清区焦点小学排名/1,-1/3、大北小学4、联庄中心小学.....

    税务 日期:2024-02-08